Radionuclide Therapy of Bone Metastases: Past, Present, Future

Andrei Iagaru, MD
Sep 19th, 2013
Prostate Cancer Clinical States

Clinically Localized Prostate cancer

Biochemically Relapsed Prostate cancer

Non-metastatic, Hormone-responsive Prostate cancer

Non-metastatic CRPC

Metastatic, Hormone-responsive Prostate cancer

Metastatic CRPC

Chemo-refractory CRPC

Prostate cancer-specific death

Death from co-morbidities

10 - 15 years +

>200,000

60,000

>30,000

Prostatectomy
Radiation ± ADT
Brachytherapy
Primary ADT
Active Surveillance

Salvage
Radiation
Progress in Prostate Cancer

ADVANCED PROSTATE CANCER

1941: Orchietomy
1976: LHRH
1980: Mitoxantrone
1996: Docetaxel, Zoledronic acid
2004: Cabazitaxel, Sipuleucel-T
2010: Enzalutamide
2011: Denosumab
2012: Radium 223
Spectrum of Bone Disease in Prostate Cancer

- Treatment-Related Fractures
- New Bone Metastases
- Disease-Related Skeletal Complications

Castrate sensitive, nonmetastatic
Castrate resistant, nonmetastatic
Castrate resistant, metastatic
Clinical Disease States

Hormone Sensitive

- Newly diagnosed Localized disease
- Non-metastatic, Biochemical relapse
- Metastatic Hormone-naive

Castration Resistant

- Non-metastatic
- Metastatic, Asymptomatic (chemotherapy naïve)
- Metastatic, Symptomatic (chemotherapy naïve)
- Metastatic, Post docetaxel

- Ketoconazole
- Nilutamide
- Estrogens
- Provenge
- Abiraterone
- Taxotere
- Cabazitaxel
- Enzalutamide
- Alpharadin
^{85}Sr (circa 1966) ^{18}F (circa 1970) ^{87m}Sr (circa 1974) ^{99m}Tc (circa 1974)

MIPS
Molecular Imaging Program at Stanford

Stanford University
School of Medicine
Department of Radiology
Dynamic 18F NaF PET

Diagnostic 18F NaF PET
DJD Single metastasis Multiple metastases
Introduction

Past

Present

Future
Targeted
Radionuclide
Therapy
Targeted Radionuclide Therapy → Treatment of benign or malignant lesions
Targeted Radionuclide \rightarrow Use of radiation to destroy lesions

Therapy \rightarrow Treatment of benign or malignant lesions
Targeted → Delivery of radiation to specific tissue

Radionuclide → Use of radiation to destroy lesions

Therapy → Treatment of benign or malignant lesions
Targeted Radionuclide Therapy

Katie Walker, Lawrence Livermore National Lab
Choice of Carrier

Liposomes filled with radionuclides

Radiolabelled antibodies

Radiolabelled antibody fragments & various proteins

Radiolabelled peptides

Radiolabelled low molecular weight drugs

Radioactive ions

MW

10^2

10^3

10^4

10^5

10^6
Penetrating Distances

- Alpha
- Beta
- Gamma and X-rays
- Neutron
The ideal agent for painful bone metastases:

- More uptake in lesions than normal bone
- Distribution predicted by Tc-99m MDP scan
- Rapid clearance from remainder of body
- Long half life
- Beta energy >0.8 MeV - < 2.0 MeV
- Easy to produce
- Cost reasonable

Nuclear Medicine: Therapy

Radiopharmaceuticals

<table>
<thead>
<tr>
<th>Radionuclide</th>
<th>$T\frac{1}{2}$</th>
<th>MaxB (Mev)</th>
<th>Max Range (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>89Sr</td>
<td>50.5</td>
<td>1.46</td>
<td>6.7</td>
</tr>
<tr>
<td>32P</td>
<td>14.3</td>
<td>1.71</td>
<td>8</td>
</tr>
<tr>
<td>153Sm</td>
<td>1.95</td>
<td>0.8</td>
<td>3.4</td>
</tr>
<tr>
<td>186Re HEDP</td>
<td>3.8</td>
<td>1.07</td>
<td>4.7</td>
</tr>
</tbody>
</table>
Introduction

Past

Present

Future
Past: 32P Sodium Phosphate

- Careful, do not confuse with 32P Chromic Phosphate (used for intracavitary administration)

- 32P Sodium Phosphate is for i.v. administration

- FDA-approved prior to Jan 1, 1982 for Mallinckrodt

- It is usually not administered for the treatment of bone metastases when the leukocyte count is below 5,000/ cu mm and platelet count is below 100,000/cu mm
Marketed by Anazao Health since June 2012

- Very infrequently used for painful bone metastases
- There is perception that bone marrow suppression is more common than with other radiopharmaceuticals
- Bound to hydroxyapatite
- Excretion mainly renal
- Main use in hematological diseases
 - Thrombocytopenia
 - Polycythemia vera
- Historically used for bone metastases and leukemia
Ø Introduction

Ø Past

Ø Present

Ø Future
Present: ^{89}Sr (Metastron®)

- Pure beta emitter
- Half-life 50.5 days
- Calcium analogue
- ^{85}Sr and ^{87m}Sr produce scans similar to ^{99m}Tc MDP scans
- Excretion mostly renal
Present: 89Sr (Metastron®)

- 4 mCi fixed dose
- FDA-approved in Jun, 1993 for Amersham Health (now GE Healthcare)
Present: ^{153}Sm (Quadramet®)

- Complex decay
- Beta has maximum energy of 0.81 keV
- Half-life 1.95 days
- Gamma photon (103 keV) can be used for imaging
- Excretion mostly renal
Present: 153Sm (Quadramet®)

- 1 mCi/Kg
- FDA-approved in March 1997 for DuPont Merck
- Now marketed by Jazz Pharmaceuticals in the US and IBA worldwide
Contraindications:

- White count <2,500
- Platelet count <60,000 (higher if falling)
- Impending cord compression
- Impending pathological fracture
- Disseminated coagulopathy
- Extensive soft tissue metastases
- Death imminent (life expectancy should be > 3-6 months)
- Within 1 month of myelosuppressive chemotherapy
Methods:

- Review indications and requirements
- Discussion with patient
- Discussion with referring physicians
- Radiation safety issues
- Follow-up arrangements
- Complications
- Re-treatment
Check list:

- Proven bone metastases
- Objective evidence of referral for therapy
- Complete blood count
- Recent bone scan
- Signed consent form
- Appropriate continuity of care, including blood counts
Nuclear Medicine: Therapy

<table>
<thead>
<tr>
<th>Dates</th>
<th>No of papers</th>
<th>No of patients</th>
<th>%Responding</th>
</tr>
</thead>
<tbody>
<tr>
<td>1974-83</td>
<td>9</td>
<td>190</td>
<td>77 (42-90)</td>
</tr>
<tr>
<td>1985-96</td>
<td>18</td>
<td>962</td>
<td>74 (45-91)</td>
</tr>
</tbody>
</table>

About 20% can stop analgesics

A proportion have a worsening before improvement

After McEwan Semin Nucl Med 1997
50 males with prostate carcinoma and 26 females with breast cancer were treated.

- Good response in 64%, partial in 25%, and no response in the remaining 11% with prostate cancer.
- Good response in 62%, partial in 31%, and no response in the remaining 8% with breast cancer.
- Duration of the response: 3 - 12 months (mean 6 months).
- Retreatment was as effective.

A decrease in the initial leucocyte and platelet counts after the 1st month of treatment, with a gradual recovery within 6 months.
Palliative treatment was given to 131 patients in the form of local radiotherapy (n=10), 89Sr (n=46) or i.v. olpadronate (n=66)

The incidence of SCC was 17% in the whole group, and highest in controls receiving no palliation (50%)

None of the patients treated with local radiotherapy, only 4% of patients receiving 89Sr and 21% of patients given olpadronate developed this complication
64 patients with painful bone metastases treated with 153Sm were retrospectively evaluated.

The most common primaries were breast in 28 cases (44%) and prostate in 27 (41%).

The response rate was 85% (21% complete, 40% moderate, and 24% minor).

Onset of improvement took place a median of 7 days after 153Sm administration, and pain relief persisted for a mean of 3 months.

Myelotoxicity appeared in 29% of the administrations.
43 prostate cancer patients with bone metastases were given consolidation docetaxel 20 mg/m\(^2\)/wk for 6 weeks and \(^{153}\text{Sm}\) (37 MBq/kg) during week 1.

A PSA response was obtained in 77\% (95\% CI, 61\% to 82\%).

The pain response rate was 69\% (95\% CI, 49\% to 85\%).

Although a serum PSA relapse eventually occurred in all patient cases, this regimen resulted in pain control in the long-term.
60 male patients with advanced prostate carcinoma and 40 female patients with advanced breast carcinoma

30 men and 20 women were treated with 89Sr

30 men and 20 women were treated with 153Sm

Complete pain relief was found in 40% of women and 40% of men treated using 153Sm and in 25% of women and 33% of men treated with 89Sr

No analgesic effect occurred in 20% of patients

A better analgesic effect was found in cases of osteoblastic metastases compared to mixed metastases
Bone marrow recovery following use of systemic 153Sm-lexidronam and 89Sr-chloride for bone pain palliation after myelosuppressive therapy

FRANK J. PAPATHEOFANIS1 & MOHAMMAD M. NAJIB2

- 48 patients with solid tumors who failed multi-agent chemotherapy were investigated
- In patients who received 153Sm, there is a spike in FL* concentration at approximately 3 weeks after dose administration preceding a decrease in WBC and PLT counts
- A spike in FL levels in patients who received 89Sr therapy is noted at approximately 10 weeks ($p < 0.034$)
- Changes associated with 153Sm therapy occurred earlier and returned to control levels more rapidly than did those in patients similarly treated with 89Sr

*FL = plasma flt3 ((FMS (Friend murine strain))-like tyrosine kinase 3)-ligand cytokine
A retrospective analysis of the cost effectiveness of treatment with Metastron® (^{89}Sr-chloride) in patients with prostate cancer metastatic to bone

Aim: to estimate the cost of medical care for patients on \(^{89}\)Sr as adjunct therapy in patients with prostate cancer metastatic to bone and to compare the costs of those receiving \(^{89}\)Sr with those receiving placebo

The group receiving \(^{89}\)Sr had a lifetime reduction of $1,720 per person when compared with placebo

A reduction of $5,696 per patient in the \(^{89}\)Sr group was shown based upon requirements for admission for tertiary care
- Introduction
- Past
- Present
- \textit{Future}
Future: ^{223}Ra (Alpharadin$^\text{®}$)

- Complex decay scheme, including mostly alpha, but also beta and gamma
- Half life of 11.4 days
- Excretion mostly renal, but also through the GI tract
- Very short range and therefore causes less damage to surrounding tissues than other radiopharmaceuticals
Future: 223Ra (Alpharadin®)

- 50 kBq/kg

- Developed in Norway by Algeta, approved in Europe

- Marketed by Bayer Healthcare
Alpha Particle Radiation

- **Daughter Nucleus**: Th-231
- **Parent Nucleus**: U-235
- **Alpha Particle**: (Helium Nucleus)
Future: ^{223}Ra (Alpharadin®)

- Self-targets to bone metastases by virtue of its properties as a calcium-mimic

Properties of selected radiopharmaceuticals for treatment of bone metastases in mCRPC

<table>
<thead>
<tr>
<th>Radionuclide</th>
<th>Particle</th>
<th>Primary excretion</th>
<th>Physical half-life (days)</th>
<th>Particle energy in MeV</th>
<th>Tissue range (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radium-223 ((\text{Alpharadin}^{\text{R}})_{38})</td>
<td>Alpha</td>
<td>Small bowel</td>
<td>11.4</td>
<td>5.56</td>
<td><0.1</td>
</tr>
<tr>
<td>Samarium-153 ((\text{Quadramet}^{\text{R}})_{76}^{*})</td>
<td>Beta</td>
<td>Kidney</td>
<td>1.9</td>
<td>0.81</td>
<td>3</td>
</tr>
<tr>
<td>Strontium-89 ((\text{Metastron}^{\text{R}})_{77}^{*})</td>
<td>Beta</td>
<td>Kidney</td>
<td>50.5</td>
<td>1.46</td>
<td>8</td>
</tr>
</tbody>
</table>

Decay of \(^{223}\text{Ra}\):
- 95.3% emitted as \(\alpha\) particles
- 3.6% emitted as \(\beta\) particles
- 1.1% emitted as photons
Radium-223 chloride: a potential new treatment for castration-resistant prostate cancer patients with metastatic bone disease

- **Phase II**: Found no significant side effects and showed 4.5 months increased OS, delayed SREs, and improvement in biochemical end points (PSA, total ALP)

- **Phase III**: Alpharadin successfully met the primary endpoint of OS in the ALSYMPCA (ALpharadin in SYMptomatic Prostate CAncer patients) study in 922 patients
ALSYMPCA Trial Results

- 223Ra improved overall survival by 44% compared to placebo ($p = 0.00185$)

- Average overall survival was 14.0 months for men treated with 223Ra and 11.2 months for men treated with placebo

- Average time to first skeletal-related event was 13.6 months for men treated with 223Ra and 8.4 months for men treated with placebo

- Levels of total alkaline phosphatase (ALP) were normalized in 33% of men treated with 223Ra and 1% of men treated with placebo

- Treatment with 223Ra improved time to PSA progression by 49% compared to placebo ($p = 0.00015$)
ALSYMPCA Trial Results

A. Overall Survival
- Hazard ratio, 0.70 (95% CI, 0.58–0.83)
- P<0.001
- Radium-223 (median overall survival, 14.9 mo)
- Placebo (median overall survival, 11.3 mo)

B. Time to First Symptomatic Skeletal Event
- Hazard ratio, 0.66 (95% CI, 0.52–0.83)
- P<0.001
- Radium-223 (median time to first symptomatic skeletal event, 15.6 mo)
- Placebo (median time to first symptomatic skeletal event, 9.8 mo)
ALSYMPCA Trial Results

Table 2. Main Secondary Efficacy End Points in the Intention-to-Treat Population.

<table>
<thead>
<tr>
<th>End Point</th>
<th>Radium-223 (N=614)</th>
<th>Placebo (N=307)</th>
<th>Hazard Ratio (95% CI)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median time to first symptomatic skeletal event — mo</td>
<td>15.6</td>
<td>9.8</td>
<td>0.66 (0.52–0.83)</td>
<td><0.001</td>
</tr>
<tr>
<td>Median time to increase in total alkaline phosphatase level — mo</td>
<td>7.4</td>
<td>3.8</td>
<td>0.17 (0.13–0.22)</td>
<td><0.001</td>
</tr>
<tr>
<td>Median time to increase in PSA level — mo</td>
<td>3.6</td>
<td>3.4</td>
<td>0.64 (0.54–0.77)</td>
<td><0.001</td>
</tr>
<tr>
<td>Patients with ≥30% reduction in total alkaline phosphatase response — no./total no. (%)</td>
<td>233/497 (47)</td>
<td>7/211 (3)</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Patients with normalization of total alkaline phosphatase level — no./total no. (%)*</td>
<td>109/321 (34)</td>
<td>2/140 (1)</td>
<td><0.001</td>
<td></td>
</tr>
</tbody>
</table>

* Only patients who had elevated total alkaline phosphatase levels at baseline are included.
Common non-hematologic adverse events (occurring in at least 15% of patients) included:

- Bone pain (in 43% of 223Ra patients vs. 58% of placebo-treated patients)
- Nausea (34% vs. 32%)
- Diarrhea (22% vs. 13%)
- Constipation (18% vs. 18%)
- Vomiting (17% vs. 13%)

The most common hematologic adverse event was anemia (in 27% of 223Ra patients vs. 27% of placebo-treated patients)

The most common grade 3 and grade 4 adverse event was bone pain (18% of 223Ra patients vs. 23% of placebo-treated patients)
Radiation/Release Considerations

- Since patients treated with Alpharadin® emit negligible external radiation doses, they can be released immediately.
- For example, the average patient receiving 3.5 MBq (95 µCi) would have a dose rate at 1 m < 0.35 μSv/h (0.035 mrem/h).
- There are no restrictions on family contact after administration of Alpharadin®.
- The range of α-particles in human tissue is approximately 0.1 mm.
- Once injected, α-particles are stopped by the patient’s tissue.
THANK YOU!

http://nuclearmedicine.stanford.edu

http://mips.stanford.edu