Radioimmunotherapy in non-Hodgkin lymphomas

Andrei Iagaru, MD
Hodgkin vs. non-Hodgkin lymphomas

Nuclear Medicine Imaging in NHL

Radioimmunotherapy for NHL

Future directions
The American Cancer Society estimated 70,130 new cases of non-Hodgkin lymphoma (NHL) in the United States for 2012.

The estimated number of deaths for the same year was 18,940.
2012 Estimated US Cancer Cases*

<table>
<thead>
<tr>
<th>Cancer Site</th>
<th>Men 766,860</th>
<th>Women 678,060</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prostate</td>
<td>29%</td>
<td>29%</td>
</tr>
<tr>
<td>Lung & bronchus</td>
<td>14%</td>
<td>14%</td>
</tr>
<tr>
<td>Colon & rectum</td>
<td>9%</td>
<td>9%</td>
</tr>
<tr>
<td>Urinary bladder</td>
<td>7%</td>
<td>6%</td>
</tr>
<tr>
<td>Melanoma of skin</td>
<td>5%</td>
<td>5%</td>
</tr>
<tr>
<td>Kidney</td>
<td>5%</td>
<td>4%</td>
</tr>
<tr>
<td>Non-Hodgkin lymphoma</td>
<td>4%</td>
<td>4%</td>
</tr>
<tr>
<td>Oral cavity</td>
<td>3%</td>
<td>3%</td>
</tr>
<tr>
<td>Leukemia</td>
<td>3%</td>
<td>3%</td>
</tr>
<tr>
<td>Pancreas</td>
<td>3%</td>
<td>3%</td>
</tr>
</tbody>
</table>

2012 Estimated US Cancer Deaths*

Men 289,550
- Lung & bronchus 29%
- Colon & rectum 9%
- Prostate 9%
- Pancreas 6%
- Leukemia 5%
- Liver & bile duct 4%
- Esophagus 4%
- Non-Hodgkin lymphoma 4%
- Urinary bladder 3%
- Kidney 3%

Women 270,100
- Lung & bronchus 26%
- Breast 14%
- Colon & rectum 9%
- Pancreas 7%
- Ovary 6%
- Leukemia 4%
- Non-Hodgkin lymphoma 3%
- Uterine corpus 3%
- Liver and bile duct 2%
- Brain/ONS 2%

<table>
<thead>
<tr>
<th></th>
<th>Hodgkin</th>
<th>Non-Hodgkin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell of origin:</td>
<td>B Lymphocyte</td>
<td>B Lymphocyte T Lymphocyte NK cell</td>
</tr>
<tr>
<td>Spread:</td>
<td>Contiguous</td>
<td>Non-contiguous</td>
</tr>
<tr>
<td>Age Distribution:</td>
<td>Bi-modal</td>
<td>50 % > 60 years</td>
</tr>
<tr>
<td>Basis of treatment:</td>
<td>Mostly Stage</td>
<td>Mostly Subtype</td>
</tr>
<tr>
<td>Prognosis:</td>
<td>> 80% OS</td>
<td>< 50% OS</td>
</tr>
</tbody>
</table>
Hodgkin Disease

Sir Thomas Hodgkin
1798-1866

First to describe lymphoma as “a non-infectious disease of the lymph gland and spleen” in 1832.
Epidemiology

- 15% of lymphomas
- Most common malignancy in young adults
- 20,000 new cases annually in N. America and Europe
NHL - WHO Classification 2001

B-cell (85%)

Indolent
- CLL/SLL
- LPL/immunocytoma/WM
- Hairy cell leukemia
- Splenic marginal zone lymphoma
- Marginal zone lymphoma (MALT-B cell
 - lymphoma, nodal (monocytoid))
- Follicular, small cell, grade 1
- Follicular, mixed small and large cell, grade 2

Aggressive
- Prolymphocytic lymphoma
- Plasmacytoma/MM
- Mantle cell lymphoma
- Follicular, large cell, grade 3
- Diffuse large B-cell (including immunoblastic
 - and diffuse large and centroblastic)
- Primary mediastinal large B-cell lymphoma
- High-grade B-cell lymphoma, Burkitt-like

Very aggressive
- Precursor B-lymphoblastic lymphoma
 - lymphoma/leukemia
- Burkitt’s lymphoma/B-cell acute leukemia

Peripheral T & NK cell (15%)

Indolent
- Large granular lymphocytic leukemia,
 - T and NK cell types
- Mycosis fungoides/Sezari syndrome
- Smoldering and chronic adult T-cell
 - leukemia/lymphoma (HTLV-1)

Aggressive
- Prolymphocytic leukemia
- Peripheral T-cell lymphoma, unspecified
- AITL
- Angiocentric lymphoma
- Intestinal T-cell lymphoma
- Anaplastic large cell lymphoma (T & null cell type)

Very aggressive
- Precursor T-lymphoblastic
- Adult T-cell lymphoma/leukemia
Most Common Subtypes: NHL WHO Classification 2001

- Diffuse Large Cell: 31%
- Follicular: 22%
- B cell: 85%
- T cell: 15%
- All Other: 12%
- Discordant: 12%
- MALT: 5%
- Peripheral T cell: 6%
- Mantle cell: 6%
- SLL: 6%
Indolent Lymphoma: When to Treat

✓ Symptoms of disease
 ➢ cytopenias, pain, SOB
✓ Tumor burden
 ➢ > 3 LNs larger than 3 cm or a single mass > 7cm
✓ Impending involvement of critical organ
✓ Steady progression during a period of observation
✓ Evidence of histologic transformation
 ➢ rapid progression, elevated LDH, histologic proof
✓ Patient preference
Rituximab
(Rituxan®, MabThera®)

- 1st FDA-approved monoclonal Ab for cancer (1997)
- Relapsed/refractory follicular or transformed CD20+ NHL
- Chimeric (long half-life)
- ~50% ORR (pivotal trial)
 - most were PRs
 - duration 13+ months

CD20
rituximab

B cell
Indolent Lymphoma: Initial Therapy if Required

- Radiation Therapy (localized disease, palliation)
- Single agent Rituximab (low tumor burden)
- Combination chemotherapy immunotherapy
 - R-CVP (cyclophosphamide, vincristine, prednisone)
 - R-FND (fludarabine, mitoxantrone, dexamethasone)
 - R-CHOP (cyclophosphamide, doxorubicin, vincristine, prednisone)
Aggressive NHL: International Prognostic Index (IPI)

Prognostic Factors (APLES)
- **Age** > 60 years
- **Performance status** > 1
- **LDH** > 1 x normal
- **Extranodal sites** > 1
- **Stage III or IV**

<table>
<thead>
<tr>
<th># Factors</th>
<th>Risk</th>
<th>5 yr OS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Low</td>
<td>73%</td>
</tr>
<tr>
<td>2</td>
<td>Low-int</td>
<td>51%</td>
</tr>
<tr>
<td>3</td>
<td>High-int</td>
<td>43%</td>
</tr>
<tr>
<td>4-5</td>
<td>High</td>
<td>26%</td>
</tr>
</tbody>
</table>

Shipp et. al., NEJM, 1993
R-CHOP: Overall Survival
18-month Median Follow-up

Survival

p=0.02

Years

R-CHOP
CHOP
- Hodgkin vs. Non-Hodgkin Lymphomas
- *Nuclear Medicine Imaging in NHL*
- Radioimmunotherapy for NHL
- Future directions
Imaging Patients with NHL

- Diagnostic imaging plays a major role in the evaluation of patients with NHL

- Imaging modalities include radiography, computed tomography, bone scintigraphy and PET
Diffuse Large B-Cell Lymphoma

PRE RT EVALUATION

- Complete response \(^r\) (PET negative)
- Partial response \(r,s\) (PET positive)
- No response or progressive disease \(r\)

FOLLOW-UP THERAPY

- Complete planned course of treatment \(t\)
- Complete course of therapy with higher RT dose \(m,t\)
- High dose therapy with autologous stem cell rescue \(\pm RT\)
- Pre- or post-transplant
- Clinical trial (may include allogeneic stem cell transplant \(\pm RT\)
- Pre- or post-transplant)

END OF TREATMENT RESTAGING

- At completion of treatment, repeat all positive studies. \(^t\) If PET-CT scan positive, rebiopsy before changing course of treatment.

INITIAL RESPONSE

- Complete response \(r,v\)
- Partial response \(r\)
- No response or progressive disease \(r\)

FOLLOW-UP

- Clinical
 - H&P and labs, every 3-6 mo for 5 y and then yearly or as clinically indicated
 - Imaging
 - CT scan no more often than every 6 mo for 2 y after completion of treatment, then only as clinically indicated

- Relapse, see Relapse or Refractory Disease (BCEL-6)
Non-Hodgkin’s Lymphomas

<table>
<thead>
<tr>
<th>Response</th>
<th>Definition</th>
<th>Nodal Masses</th>
<th>Spleen, Liver</th>
<th>Bone Marrow</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR</td>
<td>Disappearance of all evidence of disease</td>
<td>(a) FDG-avid or PET positive prior to therapy; mass of any size permitted if PET negative (b) Variably FDG-avid or PET negative; regression to normal size on CT</td>
<td>Not palpable, nodules disappeared</td>
<td>Infiltrate cleared on repeat biopsy; if indeterminate by morphology, immunohistochemistry should be negative</td>
</tr>
<tr>
<td>PR</td>
<td>Regression of measurable disease and no new sites</td>
<td>≥ 50% decrease in SPD of up to 6 largest dominant masses; no increase in size of other nodes (a) FDG-avid or PET positive prior to therapy; one or more PET positive at previously involved site (b) Variably FDG-avid or PET negative; regression on CT</td>
<td>≥ 50% decrease in SPD of nodules(for single nodule in greatest transverse diameter); no increase in size of liver or spleen</td>
<td>Irrelevant if positive prior to therapy; cell type should be specified</td>
</tr>
<tr>
<td>SD</td>
<td>Failure to attain CR/PR or PD</td>
<td>(a) FDG-avid or PET positive prior to therapy; PET positive at prior sites of disease and no new sites on CT or PET (b) Variably FDG-avid or PET negative; no change in size of previous lesions on CT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relapsed disease or PD</td>
<td>Any new lesion or increase by ≥ 50% of previously involved sites from nadir</td>
<td>Appearance of a new lesion(s) > 1.5 cm in any axis, ≥ 50% increase in SPD of more than one node, or ≥ 50% increase in longest diameter of a previously identified node > 1 cm in short axis Lesions PET positive if FDG-avid lymphoma or PET positive prior to therapy</td>
<td>> 50% increase from nadir in the SPD of any previous lesions</td>
<td>New or recurrent involvement</td>
</tr>
</tbody>
</table>
Recommendations on the Use of 18F-FDG PET in Oncology

James W. Fletcher1, Benjamin Djulbegovic2, Heloisa P. Soares2, Barry A. Siegel3, Val J. Lowe4, Gary H. Lyman5, R. Edward Coleman5, Richard Wahl6, John Christopher Paschold7, Norbert Avril8, Lawrence H. Einhorn1, W. Warren Suh9, David Samson10, Dominique Delbeke11, Mark Gorman12, and Anthony F. Shields13

TABLE 6
Summary of Recommendations

<table>
<thead>
<tr>
<th>Disease</th>
<th>Objective</th>
<th>Recommended?</th>
<th>Net benefits?</th>
<th>Overall quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lymphoma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diagnosis</td>
<td></td>
<td>No*</td>
<td>Yes</td>
<td>Low</td>
</tr>
<tr>
<td>Staging</td>
<td>General staging</td>
<td>Suggested</td>
<td>Yes</td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td>Bone marrow staging</td>
<td>Yes</td>
<td>Yes</td>
<td>Moderate</td>
</tr>
<tr>
<td>Recurrence$^+$</td>
<td>Yes, for HD and NHL after completion of initial treatment</td>
<td>Yes</td>
<td>Yes</td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td>No, for general follow-up of asymptomatic HD or NHL</td>
<td>Yes</td>
<td>No</td>
<td>Low</td>
</tr>
</tbody>
</table>

*Synthesis of research data has not been performed.
18F-FDG-PET/CT evaluation of response to treatment in lymphoma: when is the optimal time for the first re-evaluation scan?

Andrei Iagaru¹, Yingbing Wang¹, Carina Mari², Andrew Quon¹, Michael L Goris¹, Sandra Horning³, Sanjiv Sam Gambhir¹

Hell J Nucl Med. 2008 Sep-Dec;11(3):153-6
75 year-old man with NHL. Pre-therapy FDG PET/CT shows extensive abdominal disease. PET/CT after 2 cycles of chemotherapy indicates partial metabolic response to R-CHOP therapy. At the end of therapy the scan remains positive.
19 year-old man with HD. Pre-therapy FDG PET/CT shows extensive disease involvement. PET/CT after 4 cycles of chemotherapy indicates complete metabolic response to Stanford V therapy. The scan at the end of therapy remained negative.
66 year-old man with NHL. Pre-therapy FDG PET/CT shows abdominal disease. PET/CT after 4 cycles of chemotherapy indicates partial metabolic response to R-CHOP therapy. At the end of therapy the scan is negative.
The ΔSUV from baseline to first PET/CT was 67.6% (range: 3.2 - 92.3%) in group A and 75.1% (range: 46.6 - 89.6%) in group B (P value: 0.31; F<F critical)

The ΔSUV from baseline to post-therapy PET/CT was 72.9% (range: 11.9 - 94.4%) in group A and 79.8% (range: 53.4-89.9%) in group B (P value: 0.24; F<F critical)
- Hodgkin vs. Non-Hodgkin Lymphomas
- Nuclear Medicine Imaging in NHL
- Radioimmunotherapy for NHL
- Future directions
<table>
<thead>
<tr>
<th></th>
<th>Bexxar®</th>
<th>Zevalin®</th>
</tr>
</thead>
<tbody>
<tr>
<td>β-emitter</td>
<td>131I (half life: 8.01 days)</td>
<td>90Y (half life: 2.67 days)</td>
</tr>
<tr>
<td>Anti-CD20 antibody</td>
<td>Tositumomab</td>
<td>Ibritumomab Tiuxetan</td>
</tr>
<tr>
<td>Antibody type</td>
<td>Monoclonal murine</td>
<td>Monoclonal murine</td>
</tr>
<tr>
<td>Pre-dose injection</td>
<td>Unlabeled Tositumomab</td>
<td>Unlabeled Rituximab</td>
</tr>
<tr>
<td>Pre-therapy imaging</td>
<td>Yes (for dosimetry)</td>
<td>No</td>
</tr>
<tr>
<td>Pre-therapy dose</td>
<td>131I-Tositumomab (5 mCi)</td>
<td></td>
</tr>
<tr>
<td>Treatment dose</td>
<td>75 cGy (whole-body)</td>
<td>0.4 mCi/kg (up to 32 mCi)</td>
</tr>
</tbody>
</table>
Radioimmunotherapy for NHL

- **Ibritumomab** (murine antibody parent of Rituximab)
- **Tiuxetan** (MX-DTPA) conjugated to antibody forming strong urea-type bond

CD20 antigen
- Expressed only on B lineage cells
- Does not shed, internalize or modulate

Yttrium-90
- $T_{1/2} = 64$ hours
- Outpatient administration
- Beta emission $\chi_{90} = 5$ mm

90Y Zevalin
- Ibritumomab (murine antibody parent of Rituximab)
- Tiuxetan (MX-DTPA) conjugated to antibody forming strong urea-type bond
- Stable retention of 90Y
Protocol

Imaging dose
- Rituximab 250 mg/m²
- \({^{131}I}\)-Tositumomab (5 mCi)

Therapeutic dose
- Rituximab 250 mg/m²
- \(^{90}Y\) Zevalin 0.4mCi/kg or
- \({^{131}I}\)-Bexxar (75 cGy)
NO Rituximab 250 mg/m²

Rituximab 250 mg/m²

Courtesy of Dr Goris
NO Rituximab 250 mg/m²

Rituximab 250 mg/m²

Courtesy of Dr Goris
Scheduling Overview

- Receive call / consult from oncologist
- 5 things have to be scheduled together!
 - Physician schedule
 - Patient schedule
 - Infusion Center schedule
 - Nuclear Medicine Clinic schedule
 - Radiopharmacy schedule
Diagnostic Dose Infusion
Imaging: Dosimetry and Biodistribution

Visit 1: Day 0
Visit 2: Day 2,3,4
Visit 3: Day 6,7
Bexxar® vs. Zevalin®

✓ 131I-tositumomab
✓ Cold infusion of tositumomab
✓ Imaging for dosimetry and biodistribution
✓ Interval imaging
 ▪ 1st: Day 0
 ▪ 2nd: Day 2,3,4
 ▪ 3rd: Day 6,7
✓ Requires thyroid blocking with SSKI or Pl pills

✓ 90Y ibritumomab
✓ Cold infusion of rituximab
✓ Imaging for biodistribution not required anymore
✓ Fewer special radiation safety precautions
BEXXAR® Therapeutic Regimen Worksheet #1 - Equipment Settings Evaluation

DATE
- VISIT 1 (Day 6): 11/19/2008
- VISIT 2 (Day 2, 3 or 4): 11/21/2008
- VISIT 3 (Day 8 or 7): 11/24/2008

DOSE CALIBRATOR ACTIVITY
- Time Measured
 - Visits 1: 10.18
 - Visits 2: 8.30
 - Visits 3: 4.70
- Indium-111 Source Activity (A) in μCi
 - Visits 1: 55.7
 - Visits 2: 47.0

GAMMA CAMERA SETTINGS
- Camera Name: Infinia
- Energy Window Setting (20%-25%)
 - Visits 1: 20%
 - Visits 2: 20%
 - Visits 3: 20%
- Collimator: Rated to 384KEV
- Total Body Scan Speed (10-30 cm/min)
 - Visits 1: 15
 - Visits 2: 15
 - Visits 3: 15
- Scan Length (cm)
 - Visits 1: 195
 - Visits 2: 195
 - Visits 3: 195
- Camera Anterior Height above Table (cm)
 - Visits 1: 34
 - Visits 2: 34
 - Visits 3: 34

SOURCE COUNTS (Anterior and Posterior)
- **TOTAL COUNTS**
 - **Immediately After Injection**
 - Anterior: 8.15
 - Posterior: 8.40
 - **24 Hours After Injection**
 - Anterior: 22661
 - Posterior: 23453
 - **72 Hours After Injection**
 - Anterior: 17692
 - Posterior: 24934

BACKGROUND COUNTS (Anterior and Posterior)
- **TOTAL COUNTS**
 - **Immediately After Injection**
 - Anterior: 7.50
 - Posterior: 8.20
 - **24 Hours After Injection**
 - Anterior: 10996
 - Posterior: 10954
 - **72 Hours After Injection**
 - Anterior: 11763
 - Posterior: 11845

CALCULATIONS
1. Background Corrected Source Count
 -
 -
2. Calibration Factor (counts per μCi)
 - CF = C_{24h}/A_{24h}
 - CF = 267/271

RESIDENCE TIME GRAPH
- Graph to Estimate Total Body Residence Time

G. Estimated Indium-111 Activity from Visits 1 and 2

\[\text{TBRT}_{24h} = \frac{t_2}{\ln(S/100)} = \frac{42.7}{\ln(688/100)} = 114 \]

- Indium-111 Activity (mCi) = Activity Hours (mCi/ h) × Desired Total Body Dose (cGy)
- Indium-111 Activity (mCi) = Activity Hours (mCi/ h) × Desired Total Body Dose (cGy)

II. Prescribed Indium-111 Activity

\[\text{Indium-111 Activity (mCi)} = \frac{\text{Activity Hours (mCi/ h) \times Desired Total Body Dose (cGy)}}{75} \]

- Indium-111 Activity (mCi) = Activity Hours (mCi/ h) × Desired Total Body Dose (cGy)

DATE AND TIME OF PLANNED ADMINISTRATION:
- Date/Time After completing this section, fax worksheets 1, 2A and 2B to the BEXXAR Service Center at (215) 751-5725 for dose verification (until certification process is completed). Provide prescrd activity to radiopharmacy for dose preparation.

I. Calculation of Actual Administered Activity for Therapeutic Dose

- Measured Activity (Act_{me}) of Dose
- Prior to Administration
- Measured Residual Activity (Act_{res})
- After Administration

\[\text{Actual Administered Activity (Act_{TA})} = \text{Act}_{me} - \text{Act}_{res} \]

Instructions
- Fax this worksheet to the BEXXAR Service Center after completing scan 3 at (215) 751-5725 (until certification process is complete).

References
- BEXXAR® Therapeutic Regimen Worksheet #1 - Equipment Settings Evaluation.
38 patients were treated with RIT for NHL (20 received Zevalin®; 18 received Bexxar®).
The 12-week ORR for all patients was 47% and the CR rate was 13%.
The 12-week ORR did not significantly differ between the Zevalin® and Bexxar® groups.
Grade 3 or 4 thrombocytopenia occurred in 57% and 56% of patients treated with Zevalin® and Bexxar®, respectively.
Grade 3 or 4 neutropenia was observed in 57% and 50% of patients treated with Zevalin® and Bexxar®, respectively.
14/30 patients (47%) had response at 12 wk after RIT: 4 had CR (13%) and 10 had PR (33%). Cumulative OS was significantly longer for patients who responded to RIT at 12 wk than for those who did not ($P \leq 0.05$).

Overall survival did not significantly differ between patients who Zevalin® and those who received Bexxar®.

Retrospective review (Jan 2000 – Dec 2008) of 71 patients with NHL, who were treated with Bexxar® (35 patients, group A) or Zevalin® (36 patients, group B) for refractory/relapsed disease

- Group A included 18 men and 17 women, 35-81 year old (average: 59.9 ± 12.7)
- Group B included 27 men and 9 women, 36-85 year old (average: 55.4 ± 13.8)
60 year-old woman with NHL and complete response after \(^{90}\)Y-Ibritumomab Tiuxetan (Zevalin®) treatment. A) pre-therapy (1 month) \(^{18}\)F FDG PET shows cervical, axillary, abdominal, pelvic and inguinal lesions (arrowheads); B) \(^{18}\)F FDG PET after therapy (3 months) is negative for active disease.

65 year-old woman with NHL and complete response after \(^{131}\)I-Tositumomab (Bexxar®) treatment. A) pre-therapy (1 month) \(^{18}\)F FDG PET shows abdominal lesions (arrowheads); B) \(^{18}\)F FDG PET after therapy (3 months) is negative for active disease.
57 year-old man with NHL and stable disease after Zevalin® treatment. MIP images of 18F FDG PET scans before (A) and after (B) treatment (3 months apart) show no changes of the lesions noted prior to therapy.
45 year-old man with NHL and progressive disease after Zevalin® treatment. MIP images of 18F FDG PET scans before (A) and after (B) treatment (3 months apart) show progression of the lesions noted prior to therapy.
Observed Response Rates in Patients Treated with Bexxar® vs. Zevalin®

<table>
<thead>
<tr>
<th>Response Type</th>
<th>Bexxar®</th>
<th>Zevalin®</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective responses</td>
<td>24/35 (68.6%)</td>
<td>28/36 (77.8%)</td>
</tr>
<tr>
<td>Complete response</td>
<td>12/35 (34.3%)</td>
<td>15/36 (41.7%)</td>
</tr>
<tr>
<td>Partial response</td>
<td>8/35 (22.8%)</td>
<td>9/36 (25%)</td>
</tr>
<tr>
<td>Mixed response</td>
<td>4/35 (11.4%)</td>
<td>4/36 (11.1%)</td>
</tr>
<tr>
<td>Stable disease</td>
<td>6/35 (17.1%)</td>
<td>4/36 (11.1%)</td>
</tr>
<tr>
<td>Disease progression</td>
<td>5/35 (14.3%)</td>
<td>4/36 (11.1%)</td>
</tr>
</tbody>
</table>
Observed Toxicity Rates in Patients Treated with Bexxar® vs. Zevalin®

<table>
<thead>
<tr>
<th></th>
<th>Bexxar®</th>
<th>Zevalin®</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platelets*</td>
<td>36.9% ± 0.33</td>
<td>52.6% ± 0.32</td>
</tr>
<tr>
<td>Lymphocites*</td>
<td>27.8% ± 0.27</td>
<td>34.2% ± 0.38</td>
</tr>
<tr>
<td>Hemoglobin*</td>
<td>4.9% ± 0.15</td>
<td>7.6% ± 0.11</td>
</tr>
<tr>
<td>Grade III/IV toxicity</td>
<td>16/35 (45.7%)</td>
<td>22/36 (61.1%)</td>
</tr>
</tbody>
</table>

- Grade III and IV hematological toxicity was reversible

Average decreases at post-therapy nadir
90Y-Ibritumomab Therapy in Refractory Non-Hodgkin’s Lymphoma: Observations from 111In-Ibritumomab Pretreatment Imaging

Andrei Iagaru¹, Sanjiv Sam Gambhir², and Michael L. Goris³
Retrospective study (Jan 2000 – Jul 2006) of 31 patients with NHL, who were treated with Zevalin® for refractory / relapsed disease.

This cohort consisted of follicular (15), mantle cell (8), diffuse large B-cell (6), marginal zone (1) and immunoblastic (1) disease subtypes.

The group included 23 men and 8 women, with age range of 36 - 85 years (average: 56.9±13.3).

The administered therapeutic doses of Zevalin® ranged 17-34 mCi (average: 28.5 ± 4.45).
75 year-old man with NHL and complete response after Zevalin treatment. No lesions are seen on the pre-therapy 111In-Ibritumomab scan. FDG PET shows resolution of the lesions noted prior to therapy.
36 year-old woman with NHL and complete response after Zevalin treatment. Lesions are seen in the axillary and inguinal regions on the pre-therapy 111In-Ibritumomab scan. FDG PET shows resolution of the lesions noted prior to therapy.
60 year-old woman with NHL and complete response after Zevalin treatment. No lesions are seen on the pre-therapy 111In-Ibritumomab scan. FDG PET shows resolution of the lesions noted prior to therapy.
57 year-old man with NHL and stable disease after Zevalin treatment. Lesions are seen in the inguinal region on the pre-therapy 111In-Ibritumomab scan. FDG PET scans (3 months apart) show no changes of the lesions noted prior to therapy.
45 year-old man with NHL and progressive disease after Zevalin treatment. Lesions are seen in the abdominal region on the pre-therapy 111In-Ibritumomab scan. FDG PET scans (3 months apart) show progression of the lesions noted prior to therapy.
<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>111In-Zevalin positive scan</th>
<th>111In-Zevalin negative scan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete Response (9/28)</td>
<td>2 pts</td>
<td>7 pts</td>
</tr>
<tr>
<td>Partial Response (8/28)</td>
<td>7 pts</td>
<td>1 pt</td>
</tr>
<tr>
<td>Mixed Response (4/28)</td>
<td>4 pts</td>
<td>0 pts</td>
</tr>
<tr>
<td>No Change (4/28)</td>
<td>3 pts</td>
<td>1 pt</td>
</tr>
<tr>
<td>Progressive Disease (3/28)</td>
<td>3 pts</td>
<td>0 pts</td>
</tr>
</tbody>
</table>
Hodgkin vs. Non-Hodgkin Lymphomas

Nuclear Medicine Imaging in NHL

Radioimmunotherapy for NHL

Future directions
Radio-chelated monoclonal antibodies labeled with relatively long half-life positron emitters 64Cu (12 hours) and 124I (4 days), which target tumor-specific antigens such as the CD-20 present on the surface of B-cells.

The anti-CD20 monoclonal antibodies used for NHL therapy can potentially be used for imaging if labeled with a positron emitter.

Perk and colleagues labeled Zevalin® with 89Zr and reported the first use in a human subject.
HO₂C-\text{N}⁻\text{N}⁻\text{N}⁻\text{CO}_₂\text{H} + \text{NH}_₂-\text{Rituximab}

1 hour \rightarrow \text{pH 7.35}

\text{HO₂C-}\text{N}⁻\text{N}⁻\text{N}⁻\text{CO}_₂\text{H}

\text{HO₂C-}\text{N}⁻\text{N}⁻\text{N}⁻\text{CO}_₂\text{H} + \text{NH}_₂-\text{Rituximab}

\text{HO₂C-}\text{N}⁻\text{N}⁻\text{N}⁻\text{CO}_₂\text{H} + \text{NH}_₂-\text{Rituximab}

\text{HO₂C-}\text{N}⁻\text{N}⁻\text{N}⁻\text{CO}_₂\text{H} + \text{NH}_₂-\text{Rituximab}

\text{64CuCl}_2

\text{pH 6.30}

45°C, 1 hour

\text{HO₂C-}\text{N}⁻\text{N}⁻\text{N}⁻\text{CO}_₂\text{H} + \text{NH}_₂-\text{Rituximab}
Transverse view

Coronal View

15.6% ID/g

Spleen

Without pre-dosing

With pre-dosing (2 ug/kg)
Positron Emission Tomography of 64Cu-DOTA-Rituximab in a Transgenic Mouse Model Expressing Human CD20 for Clinical Translation to Image NHL

Arutselvan Natarajan,¹ Gayatri Gowrishankar,¹ Carsten H. Nielsen,¹ Sen Wang,¹ Andrei Iagaru,¹ Michael L. Goris,² Sanjiv Sam Gambhir²,³,⁴
- Results of larger phase III trials currently underway will become available

- Better patient education and outreach to the community (support/advocacy groups)

- Engage medical oncologists and radiation oncologists in the practice of RIT

- Introduction of novel radiolabeled antibodies for targeted NHL therapy
Charges* for Bexxar®/Zevalin® vs. R-CHOP

<table>
<thead>
<tr>
<th>Bexxar®/Zevalin®</th>
<th>R-CHOP (6 cycles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$50,000</td>
<td>$100,000</td>
</tr>
<tr>
<td>$100,000</td>
<td>$150,000</td>
</tr>
<tr>
<td>$150,000</td>
<td>$200,000</td>
</tr>
<tr>
<td>$200,000</td>
<td>$250,000</td>
</tr>
</tbody>
</table>

* Stanford University Medical Center pharmacy, 05/22/2009
Follicular Lymphoma (grade 1-2)

SUGGESTED TREATMENT REGIMENS

First-line Therapy
- Bendamustine + rituximab
- RCHOP (rituximab, cyclophosphamide, doxorubicin, vincristine, prednisone) (category 1)
- RCVP (rituximab, cyclophosphamide, vincristine, prednisone) (category 1)
- RFND (rituximab, fludarabine, mitoxantrone, dexamethasone) (category 2B)
- Radioimmunotherapy (category 3)
- Rituximab

First-line Therapy for Elderly or Infirm (if none of the above are expected to be tolerable in the opinion of treating physician)
- Radioimmunotherapy
- Rituximab (preferred)
- Single agent alkylators (eg, chlorambucil or cyclophosphamide) + rituximab

For patients with locally bulky or symptomatic disease, consider IFRT 4-30 Gy ± additional systemic therapy.

First-line Consolidation or Extended Dosing (optional)
- Chemotherapy followed by radioimmunotherapy (category 1)
- Rituximab maintenance 375 mg/m² one dose every 8 wk up to 2 y for patients initially presenting with high tumor burden (category 1)

Second-line and Subsequent Therapy
- BVR (bendamustine, bortezomib, rituximab)
- Chemotherapy (as in first-line therapy)
- FCMR (fludarabine, cyclophosphamide, mitoxantrone, rituximab) (category 1)
- Fludarabine + rituximab
- Radioimmunotherapy (category 1)
- See Second-line Therapy for DLBCL (BCEL-C 1 of 3)

Second-line Consolidation or Extended Dosing
- High dose therapy with autologous stem cell rescue
- Allogeneic stem cell transplant for highly selected patients
- Rituximab maintenance 375 mg/m² one dose every 12 weeks for 2 years (category 1) (optional)

See Monoclonal Antibody Directed at CD20 and Viral Reactivation (NHODG-D)
Radioimmunotherapy in follicular lymphoma: Some like it hot...

Marie José Kersten

Transfusion and Apheresis Science 44 (2011) 173–178
THANK YOU!

http://nuclearmedicine.stanford.edu

http://mips.stanford.edu